skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "AIChE"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AIChE (Ed.)
    Separation of liquid mixtures, frequently by distillation, is ubiquitous in the chemical and process industries (CPI). Distillation accounts for ~95% of the energy used in liquid separations, ~25–40% of overall energy used in CPI, and ~3% of global energy consumption.1-2 The low efficiency of distillation is largely due to two issues. First, there are large irreversible losses due to heat transfer.3 Second, a significant fraction of energy used in liquid separations is used to separate azeotropic mixtures in azeotrope-forming systems (e.g., ethanol/water). While a number of conventional distillation technologies4-5 (e.g., pressure-swing, extractive distillation, and azeotropic distillation6) and new separation approaches5 (e.g., dividing-wall columns, membranes, molecular sieves, and bio-absorbance) have been developed for azeotropic systems, these approaches largely rely on thermal separation via phase equilibrium or involve large capital and/or operational costs. 
    more » « less